21 research outputs found

    Heterogeneity of prodromal Parkinson symptoms in siblings of Parkinson disease patients.

    Get PDF
    A prodromal phase of Parkinson's disease (PD) may precede motor manifestations by decades. PD patients' siblings are at higher risk for PD, but the prevalence and distribution of prodromal symptoms are unknown. The study objectives were (1) to assess motor and non-motor features estimating prodromal PD probability in PD siblings recruited within the European PROPAG-AGEING project; (2) to compare motor and non-motor symptoms to the well-established DeNoPa cohort. 340 PD siblings from three sites (Bologna, Seville, Kassel/Goettingen) underwent clinical and neurological evaluations of PD markers. The German part of the cohort was compared with German de novo PD patients (dnPDs) and healthy controls (CTRs) from DeNoPa. Fifteen (4.4%) siblings presented with subtle signs of motor impairment, with MDS-UPDRS-III scores not clinically different from CTRs. Symptoms of orthostatic hypotension were present in 47 siblings (13.8%), no different to CTRs (p = 0.072). No differences were found for olfaction and overall cognition; German-siblings performed worse than CTRs in visuospatial-executive and language tasks. 3/147 siblings had video-polysomnography-confirmed REM sleep behavior disorder (RBD), none was positive on the RBD Screening Questionnaire. 173/300 siblings had <1% probability of having prodromal PD; 100 between 1 and 10%, 26 siblings between 10 and 80%, one fulfilled the criteria for prodromal PD. According to the current analysis, we cannot confirm the increased risk of PD siblings for prodromal PD. Siblings showed a heterogeneous distribution of prodromal PD markers and probability. Additional parameters, including strong disease markers, should be investigated to verify if these results depend on validity and sensitivity of prodromal PD criteria, or if siblings' risk is not elevated

    In vivo cholinergic basal forebrain degeneration and cognition in Parkinson's disease: Imaging results from the COPPADIS study

    Get PDF
    Introduction: We aimed to assess associations between multimodal neuroimaging measures of cholinergic basal forebrain (CBF) integrity and cognition in Parkinson’s disease (PD) without dementia. Methods: The study included a total of 180 non-demented PD patients and 45 healthy controls, who underwent structural MRI acquisitions and standardized neurocognitive assessment through the PD-Cognitive Rating Scale (PD-CRS) within the multicentric COPPADIS-2015 study. A subset of 73 patients also had Diffusion Tensor Imaging (DTI) acquisitions. Volumetric and microstructural (mean diffusivity, MD) indices of CBF degeneration were automatically extracted using a stereotactic CBF atlas. For comparison, we also assessed multimodal indices of hippocampal degeneration. Associations between imaging measures and cognitive performance were assessed using linear models. Results: Compared to controls, CBF volume was not significantly reduced in PD patients as a group. However, across PD patients lower CBF volume was significantly associated with lower global cognition (PD-CRStotal: r =0.37, p <0.001), and this association remained significant after controlling for several potential confounding variables (p =0.004). Analysis of individual item scores showed that this association spanned executive and memory domains. No analogue cognition associations were observed for CBF MD. In covariate-controlled models, hippocampal volume was not associated with cognition in PD, but there was a significant association for hippocampal MD (p =0.02). Conclusions: Early cognitive deficits in PD without dementia are more closely related to structural MRI measures of CBF degeneration than hippocampal degeneration. In our multicentric imaging acquisitions, DTI-based diffusion measures in the CBF were inferior to standard volumetric assessments for capturing cognition- relevant changes in non-demented PD

    Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients

    Get PDF
    Parkinson's disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress

    Heterogeneity of prodromal Parkinson symptoms in siblings of Parkinson disease patients

    Get PDF
    Abstract: A prodromal phase of Parkinson’s disease (PD) may precede motor manifestations by decades. PD patients’ siblings are at higher risk for PD, but the prevalence and distribution of prodromal symptoms are unknown. The study objectives were (1) to assess motor and non-motor features estimating prodromal PD probability in PD siblings recruited within the European PROPAG-AGEING project; (2) to compare motor and non-motor symptoms to the well-established DeNoPa cohort. 340 PD siblings from three sites (Bologna, Seville, Kassel/Goettingen) underwent clinical and neurological evaluations of PD markers. The German part of the cohort was compared with German de novo PD patients (dnPDs) and healthy controls (CTRs) from DeNoPa. Fifteen (4.4%) siblings presented with subtle signs of motor impairment, with MDS-UPDRS-III scores not clinically different from CTRs. Symptoms of orthostatic hypotension were present in 47 siblings (13.8%), no different to CTRs (p = 0.072). No differences were found for olfaction and overall cognition; German-siblings performed worse than CTRs in visuospatial-executive and language tasks. 3/147 siblings had video-polysomnography-confirmed REM sleep behavior disorder (RBD), none was positive on the RBD Screening Questionnaire. 173/300 siblings had <1% probability of having prodromal PD; 100 between 1 and 10%, 26 siblings between 10 and 80%, one fulfilled the criteria for prodromal PD. According to the current analysis, we cannot confirm the increased risk of PD siblings for prodromal PD. Siblings showed a heterogeneous distribution of prodromal PD markers and probability. Additional parameters, including strong disease markers, should be investigated to verify if these results depend on validity and sensitivity of prodromal PD criteria, or if siblings’ risk is not elevated

    Multicentre, randomised, single-blind, parallel group trial to compare the effectiveness of a Holter for Parkinson's symptoms against other clinical monitoring methods: study protocol

    Get PDF
    Introduction In recent years, multiple studies have aimed to develop and validate portable technological devices capable of monitoring the motor complications of Parkinson's disease patients (Parkinson's Holter). The effectiveness of these monitoring devices for improving clinical control is not known. Methods and analysis This is a single-blind, cluster-randomised controlled clinical trial. Neurologists from Spanish health centres will be randomly assigned to one of three study arms (1:1:1): (a) therapeutic adjustment using information from a Parkinson?s Holter that will be worn by their patients for 7 days, (b) therapeutic adjustment using information from a diary of motor fluctuations that will be completed by their patients for 7 days and (c) therapeutic adjustment using clinical information collected during consultation. It is expected that 162 consecutive patients will be included over a period of 6 months. The primary outcome is the efficiency of the Parkinson?s Holter compared with traditional clinical practice in terms of Off time reduction with respect to the baseline (recorded through a diary of motor fluctuations, which will be completed by all patients). As secondary outcomes, changes in variables related to other motor complications (dyskinesia and freezing of gait), quality of life, autonomy in activities of daily living, adherence to the monitoring system and number of doctor?patient contacts will be analysed. The noninferiority of the Parkinson's Holter against the diary of motor fluctuations in terms of Off time reduction will be studied as the exploratory objective. Ethics and dissemination approval for this study has been obtained from the Hospital Universitari de Bellvitge Ethics Committee. The results of this study will inform the practical utility of the objective information provided by a Parkinson's Holter and, therefore, the convenience of adopting this technology in clinical practice and in future clinical trials. We expect public dissemination of the results in 2022.Funding This work is supported by AbbVie S.L.U, the Instituto de Salud Carlos III [DTS17/00195] and the European Fund for Regional Development, 'A way to make Europe'

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Identification of candidate Parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets

    Get PDF
    Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. Objective To investigate what genes and genomic processes underlie the risk of sporadic PD. Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role. Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance. Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies

    In vivo cholinergic basal forebrain degeneration and cognition in Parkinson’s disease: imaging results from the COPPADIS study

    Get PDF
    Imatge per tensor de difusió (DTI); Nucli basal de Meynert; Malaltia de ParkinsonImagen por tensor de difusión (DTI); Núcleo basal de Meynert; Enfermedad de ParkinsonDiffusion tensor imaging (DTI); Nucleus basalis Meynert; Parkinson's diseaseThe study included a total of 180 non-demented PD patients and 45 healthy controls, who underwent structural MRI acquisitions and standardized neurocognitive assessment through the PD-Cognitive Rating Scale (PD-CRS) within the multicentric COPPADIS-2015 study. A subset of 73 patients also had Diffusion Tensor Imaging (DTI) acquisitions. Volumetric and microstructural (mean diffusivity, MD) indices of CBF degeneration were automatically extracted using a stereotactic CBF atlas. For comparison, we also assessed multimodal indices of hippocampal degeneration. Associations between imaging measures and cognitive performance were assessed using linear models. Compared to controls, CBF volume was not significantly reduced in PD patients as a group. However, across PD patients lower CBF volume was significantly associated with lower global cognition (PD-CRStotal: r = 0.37, p < 0.001), and this association remained significant after controlling for several potential confounding variables (p = 0.004). Analysis of individual item scores showed that this association spanned executive and memory domains. No analogue cognition associations were observed for CBF MD. In covariate-controlled models, hippocampal volume was not associated with cognition in PD, but there was a significant association for hippocampal MD (p = 0.02). Early cognitive deficits in PD without dementia are more closely related to structural MRI measures of CBF degeneration than hippocampal degeneration. In our multicentric imaging acquisitions, DTI-based diffusion measures in the CBF were inferior to standard volumetric assessments for capturing cognition-relevant changes in non-demented PD

    Peripheral inflammatory immune response differs among sporadic and familial Parkinson’s disease

    No full text
    Peripheral inflammatory immune responses are thought to play a major role in the pathogenesis of Parkinson’s disease (PD). The neutrophil-to-lymphocyte ratio (NLR), a biomarker of systemic inflammation, has been reported to be higher in patients with PD than in healthy controls (HCs). The present study was aimed at determining if the peripheral inflammatory immune response could be influenced by the genetic background of patients with PD. We included a discovery cohort with 222 patients with PD (132 sporadic PD, 44 LRRK2-associated PD (with p.G2019S and p.R1441G variants), and 46 GBA-associated PD), as well as 299 HCs. Demographic and clinical data were recorded. Leukocytes and their subpopulations, and the NLR were measured in peripheral blood. Multivariate lineal regression and post-hoc tests were applied to determine the differences among the groups. Subsequently, a replication study using the Parkinson’s Progression Markers Initiative cohort was performed which included 401 patients with PD (281 sPD patients, 66 LRRK2-PD patients, 54 GBA-PD patients) and a group of 174 HCs. Patients with sporadic PD and GBA-associated PD showed a significantly lower lymphocyte count, a non-significantly higher neutrophil count and a significantly higher NLR than HCs. The peripheral inflammatory immune response of patients with LRRK2-associated PD did not differ from HCs. Our study supports the involvement of a peripheral inflammatory immune response in the pathophysiology of sPD and GBA-associated PD. However, this inflammatory response was not found in LRRK2-associated PD, probably reflecting different pathogenic inflammatory mechanisms

    Increased Stroke Risk in Patients with Parkinson’s Disease with LRRK2 Mutations

    No full text
    Parkinson’s disease (PD) is associated with an increasedstroke risk, however, no relationship between coronary arterydisease (CAD) and PD was found.1To date, little is knownabout the influence of PD-related genes, such as the leucine-rich repeat kinase 2 (LRRK2), the parkin (PRKN) and theglucocerebrosidase (GBA) genes, in the vascular risk of thesepatients. This work aims to determine whether the vascularrisk differs between sporadic/familial PD forms and controls
    corecore